
Comparative Results of Dependent and Independent Variables

Focused on Regression Analysis Using Test-Driven Development

Myint Myint Moe
1

, Khine Khine Oo
2

1
University of Computer Studies, Yangon, Myanmar

2
University of Computer Studies, Yangon, Myanmar

Abstract. Test-Driven Development is a software engineering technique and should be tested previous the

code, which make sure to read the unit test. The goal of this paper is to examine product quality and

programmer productivity on the number of tests for the consequence of test-driven development. This system

builds the acceptance test suite metric and the ordinary least squares method of regression analysis to assess

the impact of the process on dependent variables and independent variables. The results of this paper are that

if developer productivity is the actual effect, external code quality will be fewer decreased and external code

quality is the actual effect if developer productivity will be fewer reduced. TDD responds to assist the

delivery of high-quality products both operational and technical perspective while enhancing developers’

productivity. TDD leads to less defects and fewer debugging period which actual code can be assured by

writing tests first and thus serving the developer get a finer understanding of the software requirements. This

proposed system evaluates the ordinary least squares and the acceptance test suite metric of regression

analysis based on a fixed time-frame.

Keywords: Test-Driven development, Unit test, no: of tests, External Quality, Developer Productivity

1. Introduction

Test-driven development is the foundation of software development but it responds unit tests previous

production code. Test-driven development is part of the agile code development approach and drive from

Extreme Programming and the Agile Platform. Before the code development, developers encourage to

compose tests [1- 2]. The possible of TDD describes various positive effects. TDD isn't a testing approach,

yet rather a development and design method in which the tests are composed before the production code.

During the implementation, the tests are added step by step and when the test is passed, the code is refactored

to improve the inside structure of the code, without changing its outside behavior. TDD cycle is repeated

until the whole functionality is implemented. For each little function of an application, TDD begins with

designing and developing tests. First, the test is created that distinguishes and approves what the code will do

in the TDD approach. Make the code and after that test in the typical testing process. The developer can be

self- assurance that code refactoring is not destroyed any existing functionality for re-executing the test cases

[3- 4].

This paper is structured as follows. The issue of Test-Driven Development initiated in Section (1). The

obviousness of the number of tests, external code quality and, developer productivity on test-driven

development (TDD) expressed in Section (2). A background of the whole procedure of test-driven

development is presented in Section (3). Section (4) describes the contribution of the interrelation of the

number of tests, external code quality, and developer productivity. Next, Section (5) shows the proposed

system of this paper. Section (6) in this paper describes discussion and comparison of results. Finally, the

conclusion of this paper describes in Section (7).

 Corresponding author. Tel.: +09448018175

 E-mail address: myintmyintmoe.ucsy.1971@gmail.com.

ISBN 978-981-14-4787-7

Proceedings of 2020 the 10th International Workshop on Computer Science and Engineering

(WCSE 2020)

Yangon (Rangoon), Myanmar (Burma), February 26- February 28, 2020, pp. 27-35

27

mailto:myintmyintmoe.ucsy.1971@gmail.com
admin
文本框
doi: 10.18178/wcse.2020.02.006

2. Objectives

One of the approaches of software progression was test-driven development. In recent years, this

approach has become familiar in the industry as a requirements specification method. TDD is intended to

make the code clearer, simple and bug-free [4- 5]. The goal of the proposed system analyzes the consequence

of dependent variables and independent variables on TDD. It observes the nature of the correlation between

the number of tests (TEST) and external code quality (QLTY), and the correlation between the number of

tests (TEST) and developers’ productivity (PROD). The good points of Test-Driven Development upgrade

software quality and accelerate the testing process. This approach more productive program code and make

fewer efforts per line of code. By decreasing code complexity supporting, the proposed system validates the

exactness of all codes and allows developers assurance. It is used persistently over time and motivates

developers to create higher code quality. This system assures the correctness of the code and helps

developers’ gain a better understanding of the software requirements which leads to fewer defects and less

debugging time. This intends more productive and make fewer efforts per line of code.

3. Background Theory

TDD builds up the early development of tests, at the time changes are welcomed and advanced with

functional components. So, correcting defects is made earlier in the process. Test-Driven Development is a

coding technique. Kent Beck (inventor of Extreme Programming and JUnit) invents Test-Driven

Development refers to a style of programming where three activities are closely interlinked. Three activities

are Coding, Testing, and Design. At first, its key idea is to execute initial unit tests for the code, must be

implemented, and then implement the actual feature of it. One of the features of software system requirement

is tackled subtask or user stories, which are designed to easily express and understand. These can be easy to

change by the end-user as they like during the project’s handle time [5-7].

3.1. Test-Driven Development Process

Fig. 1: Test-Driven Development flow

The TDD action is introduced in Figure 1, and includes the following steps:

(1) Select a user story,
28

(2) Write a test that fulfills a small task of the user story and run this test. Then produces a failed test,

(3) Re-write the production code necessary to implement the feature,

(4) Execute the pre-existing tests again, where any failed test is existed. When the code is true

effectively and finally goes to the refactoring stage.

(5) When the refactoring stage is completed, the actual production code is manufactured and the user

can select a new user story again. This method constructs some benefits, focus on the responsibility of

increasing the quality of the software product and the productivity of programmers.

4. Contribution

The contribution of this paper observed the number of tests (TEST), external code quality (QLTY) and

developer productivity (PROD). The number of tests is measured by the count of a single JUnit test case.

External code quality is proposed the percentage of acceptance tests passed for the implemented user stories.

The developer productivity is proposed the percentage of implemented user stories.

5. Proposed System

In this proposed system, the acceptance test suite metric and the ordinary least squares method of

regression analysis apply to measure the number of tests, external code quality, and developer productivity.

5.1. Research Questions

This system concentrates to evaluate two outcomes on the following system: external code quality based

on the number of tests and developer productivity based on the number of tests.

RQ1 (RQ-QLTY): Does a higher number of tests indicate higher quality?

RQ2 (RQ-PROD): Does a higher number of tests indicate higher developer productivity?

The notion of external code quality in RQ-QLTY and productivity in RQ-PROD are based on the

acceptance test suite metric and the ordinary least squares method of regression analysis.

5.2. Method of Acceptance Test Suite Metric

In the proposed system, the acceptance test suite metric is used by analyzing to explore possible

interactions such as number of tests, external code quality, and developer productivity. The acceptance test

suite metric is a form of mathematical regression analysis [7-9]. Regression analysis is used to investigate the

relationship between two or more variables and estimate one variable based on the others. Regression

analysis is a powerful statistical method that allows for analyzing the relationship between two or more

outcome variables of interest. QLTY and PROD are the dependent variables. TEST is the independent

variable. QLTY defined as the percentage of acceptance tests passed for the implemented tackled tasks.

PROD measured as the percentage of implemented tackled tasks. Table 1 provides the raw data used in the

assessment. To calculate this low-level metric, this system uses an automated tool. The limited-time

necessary to complete the task had an impact on the metric. In regression analysis, dependent variables are

established on the vertical y-axis, while independent variables are established on the horizontal x-axis.

5.2.1. Number of Tests (TEST)

Number of Tests (TEST) is defined as numbers of JUnit assert statements within the unit test suite

written by the participants while tackling the task. The numbers of test development as a single JUnit assert

statements. TEST assessed by the count of the JUnit test cases. TEST is a ratio measure in the range [0, ∞].

The formula for calculating TEST is defined as [9]:

TEST= no: of subtasks out of results from the no: of input subtasks (1)

TEST = the numbers of JUnit assert statements within the unit test suite

5.2.2. External Code Quality

The metric for external quality QLTY based on the number of tackled subtasks (#TST) for a given task.

A subtask as tackled assesses if at least one assert statement in the acceptance test suite associated with that

subtask passes. QLTY is a ratio measure in the range [0,100].

29

The number of tackled subtasks (#TST) is defined as:

#TST = (2)

#TST = the number of tackled subtasks

 n = the total number of subtasks

The formula for computing QLTY is defined as [10]:

QLTY = 100 (3)

QLTYi = the quality of the i
th
 tackled subtask

Where QLTYi is the quality of the i
th
 tackled subtask and QLTYi is defined as:

QLTYi = (4)

#Asserti (Pass) = the number of JUnit assertions passing in the acceptance test suite associated with the i
th

subtask

#Asserti (All) = the total number of JUnit assertions in the acceptance test suite associated with the i
th

subtask

For example, supposing that a person assesses thirteen tackled subtasks (#TST = 13), this means that

there are thirteen tackled subtasks for which at least one assert statement passes in the test suite. Let us

assume that the acceptance test of the first analyzed tackled task contains 3 assertions, out of which three are

passing. The acceptance tests of the fourth tackled task contain 10 assertions, of which three are passing and

so on.

i.e. (QLTY4 = = = 0.3)

 (QLTY = ×100 = ×100 = 95)

Table 1: Summary of acceptance tests used to calculate the metrics of Bowling Scorekeeper data-sets [10].

Task Test Assert

T1 3 3

T2 3 3

T3 2 2

T4 3 10

T5 5 5

T6 6 6

T7 8 8

T8 5 5

T9 5 5

T10 4 4

T11 2 2

T12 3 3

T13 2 2

Table 2: Solution of QLTY

Task Test Assert QLTY

T1 3 3 1

T2 3 3 1

T3 2 2 1

T4 3 10 0.3

T5 5 5 1

T6 6 6 1

T7 8 8 1

T8 5 5 1

T9 5 5 1

T10 4 4 1

T11 2 2 1

T12 3 3 1

T13 2 2 1

 51 58 95

30

5.2.3. Productivity

The productivity metric (PROD) describes the amount of work successfully performed by the subjects.

PROD is a ratio measure in the range [0,100]. The metric of PROD is calculated as follows [10]:

PROD = ×100 (5)

For example, assume a person implements a tacked task with a total of 58 assert statements in a test suite.

After running the acceptance test suite against the person’s solution, 51 assert statements are passing.

 i.e. (PROD = ×100 = = 88)

5.2.4. Assessment

The image below is a scatter plot. Scatter plots are used when this paper want to show the relationship

between two variables. Scatter plots are called relationship plots because they show how two variables

are interrelated. This analytical tool is most often used to show data correlation between two variables. This

system expects that the regression analysis of the information compiled from the external code quality over

the number of tests by TDD responds positively to questions RQ1. In the same way, this system expects that

the regression analysis of the information compiled from the developer productivity over the number of tests

by TDD responds slightly decrease to questions RQ2. In figure 2, the external code quality over the number

of tests is improved by measuring the acceptance test suite metric of quality (QLTY). In figure 3, the

developer’s productivity over the number of tests is slightly decreased by measuring the acceptance test suite

metric of productivity (PROD).

Fig. 2: QLTY is on the function of TEST Fig. 3: PROD is on the function of TEST

5.3. Method of Ordinary Least Squares

QLTY and PROD are the dependent variables. TEST is the independent variable. The data set consisting

of TEST, QLTY and PROD attributes were analyzed to discover outliers using both z-score and modified z-

score methods [11-12]. Table 1 provides the raw data used in the assessment. In the proposed system, the

ordinary least squares method is used by analyzing to explore possible interactions such as number of tests,

external code quality, and developer productivity. TEST assessed by the count of the JUnit test cases. This is

a ratio variable within the range [0, ∞]. QLTY explicated as the percentage of acceptance tests passed for the

implemented stories. PROD measured as the percentage of implemented stories. The ordinary least squares

method is a form of mathematical regression analysis used to determine the line of best- fit for data points.

Each point of data describes the association between a known independent variable and an unknown

dependent variable. In regression analysis, dependent variables are depicted on the vertical y-axis, while

independent variables are depicted on the horizontal x-axis. The line of best-fit determined from the least-

squares method has an equation that states the user story of the correlation between the data points. Line of

best-fit equations may be determined by computer software models, which include a summary of outputs for

analysis, where the coefficients and summary outputs explain the dependence of the variables being tested.

The b1 is the slope of the regression line. Thus this is the amount that the Y variable (dependent) will convert

for each 1 unit convert in the X variable. The b0 is the intercept of the regression line with the y-axis. Y-hat =

b0 + b1(x) is the illustrative regression line. This paper must determine b0 and b1 to draw this line. Y-hat is the

predicted value of Y, and it can be obtained by plugging an individual value of x into the equation and

calculating y-hat.

31

The ordinary least squares of regression analysis are computed as the formulas:

Mean of TEST (X) = (6)

ƩX = sum of all the individual #TEST data set

N = total number of # TEST data set

Mean of QLTY (or) PROD (Ȳ) = (7)

ƩY = sum of all the individual QLTY or PROD data set

N = total number of QLTY (or) PROD data set

Predicted value of Y,

b0 = ŷ-b1x= mean (Y) –b1* mean (X) (8)

b0 = the intercept of the regression line with the y-axis

b1= (9)

b1= the slope of the regression line

 ŷ= b0+b1x (10)

ŷ= the sample regression line

The table-1 dataset consisting of TEST, QLTY and PROD attributes was tested to find outliers using

both z-score and modified z-score methods. This paper used the dataset from [12].

Table 3: Dataset Used in the Assessment

TEST QLTY PROD

16 69 100

10 28 46

14 49 92
17 72 100

14 78 92
17 75 100

25 60 69
11 69 85

6 26 46

5 43 31
14 68 100

13 86 100
13 68 85

8 11 46

11 75 54
10 55 85

Table 4: Data of Computation for Correlation of TEST and QLTY

X (TEST) Y (QLTY) X X Y Y (X X)
2
 (X X)(Y Y)

16 69 3.25 10.69 10.56 34.73
10 28 -2.75 -30.31 7.56 83.36

14 49 1.25 -9.31 1.56 -11.64

17 72 4.25 13.69 18.06 58.17
14 78 1.25 19.69 1.56 24.61

17 75 4.25 16.69 18.06 70.92
25 60 12.25 1.69 150.06 20.67

11 69 -1.75 10.69 3.06 -18.70
6 26 -6.75 -32.31 45.56 218.11

5 43 -7.75 -15.31 60.06 118.67

14 68 1.25 9.69 1.56 12.11
13 86 0.25 27.69 0.06 6.92

13 69 0.25 10.69 0.06 2.67
8 11 -4.75 -47.31 22.56 224.73

11 75 -1.75 16.69 3.06 -29.20

10 55 -2.75 -3.31 7.56 9.11

204 933 0.00 0.00 351.00

X =12.75 Y =58.31

32

Table 5: Data of Computation for Correlation of TEST and PROD

For example of TEST vs. QLTY,

For mean of QLTY (Y),

(Y) = = 58.31

X X = 16- 12.75 = 3.25

Y Y = 69 - 58.31 = 10.69

(X X)
2
 = (16- 12.75)

2
= 10.56

(X X)(Y Y) = 3.25 * 10.69 = 34.73

Predicted value of Y for external code quality,

b1= = = 2.35

b0 = ŷ-b1x = mean (Y) -2.35 * mean (X) = 58.31 – (2.35 * 12.75) = 28.34

ŷ= b0+b1x = 28.34+ (2.35* 12.75) =58.31

Predicted value of Y for developer productivity,

b1= = = 2.99

b0 = ŷ-b1x = mean (Y) -2.99 * mean (X) = 76.94 – (2.99 * 12.75) = 38.8 4

ŷ= b0+b1x = 38.84+ (2.99* 12.75) =76.94

5.4. Assessment

Fig. 4: QLTY on a function of TEST Fig. 5: PROD on a function of TEST

This analytical tool is most often applied to describe data motions over a period of time or correlation

between two variables. This system expects that the regression analysis of the information compiled from the

X (TEST) Y (PROD) X X Y Y (X X)2 (X X)(Y Y)

16 100 3.25 23.06 10.56 74.95

10 46 -2.75 -30.94 7.56 85.08
14 92 1.25 15.06 1.56 18.83

17 100 4.25 23.06 18.06 98.02
14 92 1.25 15.06 1.56 18.83

17 100 4.25 23.06 18.06 98.02

25 69 12.25 -7.94 150.06 -97.23
11 85 -1.75 8.06 3.06 -14.11

6 46 -6.75 -30.94 45.56 208.83
5 31 -7.75 -45.94 60.06 356.02

14 100 1.25 23.06 1.56 28.83

13 100 0.25 23.06 0.06 5.77
13 85 0.25 8.06 0.06 2.02

8 46 -4.75 -30.94 22.56 146.95
11 54 -1.75 -22.94 3.06 40.14

10 85 -2.75 8.06 7.56 -22.17
204 1231 0.00 0.00 351.00 1048.75

X =12.75 Y =76.94

33

developer productivity by TDD responds positively to questions RQ2. Due to the fact that TDD displays

more steps in its process RQ1, a slight decrease in the external code quality is predicted.

In figure 4, the external code quality is slightly decreased by measuring the ordinary least squares (OLS)

method of quality (QLTY) [12-13]. In figure 5, the developer productivity is improved by measuring the

ordinary least squares (OLS) method of productivity (PROD).

6. Discussion and Comparison of Results

In this section, this paper presents the results acceptance test suite metric of regression analysis. Further,

a significant relation between TEST and QLTY, as expressed in RQ1, with a positive was found. Hence,

scatter plot figure 2 is an arithmetically expressive relationship between the number of tests and external

code quality. Additional, a significant relation between TEST and PORD, as expressed in RQ2, with a

somewhat down was found. So, scatterplot figure 3 is an arithmetically expressive correlation between the

number of tests and programmer productivity. In this study, the number of tests is a good predictor for TDD

programmer productivity [13]. Consequently, developer productivity over the number of tests becomes

lightly diminishment and external code quality over the number of tests becomes improvement. Next, this

paper presents the results of linear regression analysis. The predicted value of Y (ŷ) correlation between

TEST and QLTY is 58.31. Further, a significant relation between TEST and QLTY, as expressed in RQ1,

with a positive linear trend was not found. The linear regression between the two variables is expressed

through the equation: QLTY= 28.34 + 2.35* TEST. This equation is plotted in Figure 2. The significance

test for the linear regression coefficient, the regression line slope (b1) is 2.35 and the regression intercept line

of y-axis (b0) is 28.34. Hence there is no arithmetically expressive relationship between the number of tests

and external code quality. The predicted value of Y (ŷ) correlation between the TEST and PROD variables is

76.94. Further, a significant relation between TEST and PORD, as expressed in RQ2, with a positive linear

trend was found. The linear regression between the two variables is expressed through the equation: PROD=

38.84 + 2.99* TEST. This equation is plotted in Figure 3. The significance test for the linear regression

coefficient, the regression line slope (b1) is 2.99 and the regression intercept line of y-axis (b0) is 38.84.

Hence there is an arithmetically expressive correlation between the number of tests and programmer

productivity [13-14]. In this study, the number of tests is a good predictor for TDD programmer productivity.

Consequently, developer productivity becomes improvement and external code quality becomes lightly

diminishment.

7. Conclusion

The proposed system is a developing software technology that can support developers to design a code

and in their task with resolution. Therefore, the developer will be capable to create extra reliable software.

This system has given the developers a more logical accepting of their code and has supported them to

advance their development skills. The system counts the bugs and defects over the time-frame. This

approach allows thorough unit testing which enhances the quality of the software and advances customer

satisfaction. They help with retaining and varying the code. Moreover, the number of acceptance test cases

passed and number defects found through static code analysis are used to measure the external code quality.

All these measures are consistent with the studies and will be considered as standard measures. When this

proposed system assesses the acceptance test suite metric of regression analysis, the result of developer

productivity over the number of tests is fewer decreased and the result of external code quality over the

number of tests is increased in giving a fixed time-frame. The metric for external code quality and developer

productivity used in this system clearly effect. If higher external code quality, lower developer productivity

and vice versa, a developer may perhaps be more beneficial by executing as many user stories as possible but

dismissing external code quality.

8. Acknowledgments

This research paper is partially supported by academic studies. Professionals were fit to implement more

effective with test-driven development. Furthermore, this proposed system observes that the measurement

reveal different aspects of a development approach in academic studies.

34

9. References

[1] Causineou and Chartier, 2010; Outliers Detection and Treatment: a Review, International Journal of Psychological

Research, 3(1): 58-67.}

[2] H. Kou, P. M. Johnson, and H. Erdogmus, “Operational definition and automated inference of test-driven

development with Zorro,” Automated Software Engineering, 2010.

[3] Shaweta Kumar, Sanjeev bansal, “Comparative Study of Test driven Development with Traditional Techniques”;

International Journal of Soft computing and Engineering (IJSCE); ISSN:2231-2307,Volume-3, Issue-1, (March

2013).

[4] A.N. Seshu Kumar and S. Vasavi ; “Effective Unit Testing Framework for Automation of Windows Applications”;

Aswatha Kumar M.et al.(Eds); Proceedings of ICADC, AISC 174, pp. 813-822. Springerlink .com @ Springer

India 2013

[5] Y. Rafique and V. B. Miˇsi´c, “The effects of test-driven development on external quality and productivity: A

meta-analysis,” IEEE Transactions on Software Engineering, vol. 39, no. 6, pp. 835–856, 2013.

[6] Causevic, A., Shukla, R., & Punnekkat, S. (2013). “Industrial study on test driven development: Challenges and

experience” 2013 1st International Workshop on Conducting Empirical Studies in Industry (CESI).

[7] Davide Fucci, Burak Turhan, “On the role of tests in test- driven development: A differentiated and partial

replication”, Empirical Software Engineering Journal (April 2014, Volume 19, Issue 2, pp 277-302)

[8] Tosun A., Dieste O., Fucci D., Vegas S., Turhan B., Erdogmus H., Santos A., Oivo M., Toro K., Jarvinen J., &

Juristo N. An Industry Experiment on the Effects of Test-Driven Development on External Quality and

Productivity

[9] Fucci, D., Turhan, B., & Oivo, M. The Impact of Process Conformance on the Effects of Test-driven Development

(ESEM2014) 8th Empirical Software Engineering and Measurement, 2014 ACM/IEEE International Symposium

on. Turin, Italy.

[10] Fucci, D., Turhan, B., & Oivo, M. On the Effects of Programming and Testing Skills on External Quality and

Productivity in a Test-driven Development Context (EASE2015) 19th Evaluation and Assessment in Software

Engineering 2015 ACM/IEEE International Conference on., Nanjing, China.

[11] Viktor Farcic , Alex Garcia ; “Java Test-Driven Development”; First published: August 2015; Production

reference: 1240815; Published by Packt Publishing Ltd.; Livery Place; 35 Livery Street; Birmingham B3 2PB,

UK. ISBN 978-1-78398-742-9; www.packtpub.com; www.it-ebooks.in

[12] Christine Sarikas (GENERAL EDUCATION) https:// blog. prepscholar.com/independent-and-dependent-variables;

Feb 12, 2018.

[13] Tosun, A., Ahmed, M., Turhan, B., & Juristo, N. (2018). On the effectiveness of unit tests in test-driven

development. Proceedings of the 2018 International Conference on Software and System Process - ICSSP ’18.

[14] Fucci D., Scanniello G., Romano S., Shepperd M., Sigweni B., Uyaguari F., Turhan B., Juristo N., & Oivo M. “An

External Replication on the Effects of Test-driven Development Using Blind Analysis” (ESEM2016) 10th

Empirical Software Engineering and Measurement 2016 ACM/IEEE International Symposium on., Ciudad Real,

Spain.

35

